230352 - CV - The Connected Vehicle

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2018
Degree: MASTER’S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER’S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
ECTS credits: 2.5
Teaching languages: English

Teaching staff
Coordinator: Josep Paradells
Others: Ferran Silva

Degree competences to which the subject contributes

Specific:
CE3. Ability to implement wired/wireless systems, in both fix and mobile communication environments.

CE4. Ability to design and dimension transport, broadcast and distribution networks for multimedia signals

CE6. Ability to model, design, implement, manage, operate, administrate and maintain networks, services and contents

CE7. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process

CE8. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services

CE9. Ability to deal with the convergence, interoperability and design of heterogeneous networks with local, access and core networks, as well as with service integration (telephony, data, television and interactive services).

CE12. Ability to use programmable logical devices, as well as to design analog and digital advanced electronics systems. Ability to design communication devices, such as routers, switches, hubs, transmitters and receivers in different bands.

CE15. Ability to integrate Telecommunication Engineering technologies and systems, as a generalist, and in broader and multidisciplinary contexts, such as bioengineering, photovoltaic conversion, nanotechnology and telemedicine.

Transversal:
CT1a. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit.

CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
Learning objectives of the subject:

At present, electronics and telematics are taking a relevant role in the car. Communications are used to connect the different elements in the car, to interact with the smartphone of the user, to connect to Internet or even to other vehicles. Internet has reached all the places and it is starting to be present in cars. This seminar focuses on the real possibilities of communications in the car and the technologies that are available for doing so.

During classes, laboratory activities will be described that can be done at home as a complementary activity. It is mandatory to carry out two of these so called 'at home lab' per student, delivering a report up to one week after the finishing of the seminar.

Learning results of the subject:

- The seminar introduces the different technologies used in a vehicle, ranging from the internal wired buses, remote keys, NFC to identify the driver in front of the car, Bluetooth to interact with the audio and the telephone system, to the D for communicating with the road and other vehicles.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 62h 30m</th>
<th>Hours large group:</th>
<th>20h</th>
<th>32.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study:</td>
<td>42h 30m</td>
<td></td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Day</th>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 2h</td>
</tr>
</tbody>
</table>

Day 1

Description:
- Part B: Automotive Buses.

Day 2

Description:
- Part A: Automotive Buses. CAN bus.
- Part B: Automotive Buses. LIN and FlexRay.

Day 3

Description:
- Part B: Remote keys. Tire monitoring.

Day 4

Description:
- Part A: RFID and applications.
- Part B: NFC.
Labor at home (home lab): The student has to carry out 2 assignments to choose among the following:

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 22h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>- CAN bus at home lab proposal</td>
<td></td>
</tr>
<tr>
<td>- NFC at home lab proposal</td>
<td></td>
</tr>
<tr>
<td>- Bluetooth at home lab proposal</td>
<td></td>
</tr>
<tr>
<td>- WLAN at home lab proposal</td>
<td></td>
</tr>
<tr>
<td>- Mobile IP at home lab proposal</td>
<td></td>
</tr>
<tr>
<td>- Remote terminal at home lab proposal</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

- Final examination: 60%
- Participation in class: 15%
- Individual assessments (At home lab assignments, at least 2 of the offered): 25%
Bibliography

Basic:

