230357 - FEN - Financial Engineering: Applications to Information Technology Projects

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 2.5
Teaching languages: English

Teaching staff

Coordinator: José Luis Melús Moreno

Prior skills

Basic mathematical background about calculus and matrix operations

Degree competences to which the subject contributes

Specific:
CE7. Ability to plan networks and decision-making about services and applications taking into account: quality of service, operational and direct costs, implementation plan, supervision, security processes, scalability and maintenance. Ability to manage and assure the quality during the development process.
CE8. Ability to understand and to know how to apply the functioning and organization of the Internet, new generation Internet technologies and protocols, component models, middleware and services.
CE9. Ability to deal with the convergence, interoperability and design of heterogeneous networks with local, access and core networks, as well as with service integration (telephony, data, television and interactive services).
CE15. Ability to integrate Telecommunication Engineering technologies and systems, as a generalist, and in broader and multidisciplinary contexts, such as bioengineering, photovoltaic conversion, nanotechnology and telemedicine.
CE16. Ability to develop, direct, coordinate, and technical and financial management of projects in the field of: telecommunication systems, networks, infrastructures and services, including the supervision and coordination of other's subprojects; common telecommunications infrastructures in buildings or residential areas, including digital home projects; telecommunication infrastructures in transport and environment; with corresponding energy supply facilities and assessment of electromagnetic emissions and electromagnetic compatibility.

Transversal:
CT1a. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit.
CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
CT5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
230357 - FEN - Financial Engineering: Applications to Information Technology

Learning objectives and results of the subject:
The use of quantitative models in trading has grown tremendously in recent years, and seems likely to grow at similar speed in the future, due to the availability of ever faster and cheaper computing power. In this seminar the mathematical foundations of the topics required to understand these models, in a clear way, will be presented, as well as, a number of their main direct fundamentals and applications related to the Information Technology. The audience of this seminar will find it very rewarding as it will give them a head start in financial engineering and also provide them a reference of the mathematical topics involved in its treatment.

Learning results of the subject:
- Ability to specify, design networks, services, processes and applications of telecommunications in both a fixed, mobile, personal, local or long distance, with different bandwidths in multicast networks, including voice and data.
- Ability to apply both traffic engineering tools as planning tools, dimensioning and network analysis.
- Ability to analyse, model and implement new architectures, network protocols and communication interfaces and new network services and applications.
- Ability to analyse, model and apply advanced techniques both security, including cryptographic protocols, firewalls, and collection mechanisms, authentication and content protection.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 62h 30m</th>
<th>Hours large group: 20h</th>
<th>32.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study: 42h 30m</td>
<td></td>
<td>68.00%</td>
</tr>
</tbody>
</table>
Content

1. Introduction. Scope of the seminar

- **Learning time:** 6h
 - Theory classes: 2h
 - Self study: 4h

Description:
- Fundamentals in Finance
- Basic concepts in financial: compound interest bonds, forward and future contracts, options, etc.

2. Mathematical background revisited

- **Learning time:** 6h 30m
 - Theory classes: 2h
 - Self study: 4h 30m

Description:
- Calculus review: Differentiation and integration. Taylor expansions
- Linear Algebra: Matrix operations
- Exercises

3. Forward and futures contracts

- **Learning time:** 9h
 - Theory classes: 3h
 - Self study: 6h

Description:
- Definitions and operation strategies. Differences between forward and futures contracts
- Evaluation of the price of futures contracts
- Application examples to IT examples

4. Financial options

- **Learning time:** 22h
 - Theory classes: 7h
 - Self study: 15h

Description:
- Bonds and interest rate
- European and American options
- Pricing options
 - Binomial trees
 - Stochastic processes (Black-Scholes-Merton model)
 - Other methods
- Application examples to IT examples
5. Real Options

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fundamentals on real options. Differences with financial options</td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>- Valuation of projects in scenarios without uncertainty. Net Present Value model</td>
<td>Self study: 13h</td>
</tr>
<tr>
<td>- Valuation of projects in scenarios with uncertainty. Types of real options</td>
<td></td>
</tr>
<tr>
<td>- Binomial trees</td>
<td></td>
</tr>
<tr>
<td>- Other methods</td>
<td></td>
</tr>
<tr>
<td>- Application examples to IT projects</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

Final examination:	from 40% to 60%
Exercises:	from 25% to 40%
Individual assessments:	from 10% to 20%

Exercises:
- Description: Exercises to strengthen the theoretical knowledge

Oral presentation:
- Description: Presentation of a work

Extended answer test (Final examination):
- Description: Final examination.

Learning time:
- Fundamentals on real options: 6h
- Self study: 13h

- Valuation of projects in scenarios without uncertainty: Net Present Value model
- Valuation of projects in scenarios with uncertainty: Types of real options
 - Binomial trees
 - Other methods
- Application examples to IT projects
Bibliography

Basic:

