230601 - SIGPRO - Signal Processing

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Climent Nadeu
Others: Meritxell Lamarca

Opening hours
Timetable: Tuesday and Thursday from 10:00 to 13:00

Prior skills
Signals and systems
Stochastic processes

Degree competences to which the subject contributes

Specific:
1. Ability to process continuous variable signals using digital techniques.
2. Ability to characterize deterministic and random signals in time or space, and in the frequency domain.
3. Ability to analyze, model, identify and simulate linear systems, especially digital filters and adaptive systems.
4. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Transversal:
5. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
7. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Laboratory work
- Team work (distance)
- Individual work (distance)
- Exercises
- Short and extended answer tests (Partial and Final Exams)
230601 - SIGPRO - Signal Processing

Learning objectives of the subject

Learning objectives of the subject:

Understanding the concepts and techniques of the field of statistical signal processing, and their application to problems arising from real applications.

Learning results of the subject:

Given several application contexts from multimedia and communications, the students develop their ability to digitally process, with linear systems and transforms, signals from those applications which are modelled as stochastic processes.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>13h</td>
<td></td>
<td>10.40%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td></td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td></td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fundamentals of signal processing</td>
<td>34h</td>
<td>- Introduction and applications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Discrete-time signal processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Random variables and sequences</td>
</tr>
<tr>
<td>Description:</td>
<td>14h</td>
<td>- Principles of estimation theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ML and MAP estimation</td>
</tr>
<tr>
<td>2. Basic estimation theory</td>
<td>27h</td>
<td>- Periodogram and autocorrelation estimates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Smoothing the periodogram. Applications</td>
</tr>
<tr>
<td>3. Nonparametric spectrum estimation</td>
<td>20h</td>
<td>- Linear models of random processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- AR-based spectral estimation. Applications</td>
</tr>
</tbody>
</table>

Description:

- Introduction and applications
- Discrete-time signal processing
- Random variables and sequences

- Principles of estimation theory
- ML and MAP estimation

- Periodogram and autocorrelation estimates
- Smoothing the periodogram. Applications

- Linear models of random processes
- AR-based spectral estimation. Applications
5. Wiener filtering

Description:
- Optimal linear filters and predictors
- Adaptive filters. LMS algorithm.
- Applications

Learning time: 30h
- Theory classes: 8h
- Laboratory classes: 2h
- Self study: 20h

Qualification system

Final exam: 40%
Partial exams: 30%
Laboratory work: from 20%
Individual/team assessments: 10%

Bibliography

Basic:

Complementary:

Others resources:
Teacher's material: notes, problem sets, laboratory guides