Degree competences to which the subject contributes

Specific:
1. Ability to use programmable logical devices, as well as to design analog and digital advanced electronics systems. Ability to design communication devices, such as routers, switches, hubs, transmitters and receivers in different bands.
2. Ability to develop electronic instrumentation, as well as transducers, actuators and sensors.

Transversal:
3. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
4. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Laboratory classes
- Individual work (distance)
- Exercises
- Other activities
- Short answer test (Control)
- Extended answer test (Final Exam)

Learning objectives of the subject

Learning objectives of the subject:
The aim of this course is to provide students with an understanding of microprocessor-based systems and their use in instrumentation, control and communication systems. Topics covered in the course include, microprocessor architecture and organization, bus architectures, memory and I/O subsystems, timing and interfacing, peripheral controllers and programming in the 'C' language.

Learning results of the subject:
230607 - SBMIC - Systems Based on Microprocessors

- To know how microprocessor based systems can be applied.
- To understand the architecture and operation of a microprocessor system.
- To be able to use a microprocessor development system to prepare and run a program.
- To be able to implement microprocessor-based systems, including both hardware and software, using a specific microprocessor or microcontroller

<table>
<thead>
<tr>
<th>Study load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
</tr>
<tr>
<td>Hours large group: 26h</td>
</tr>
<tr>
<td>Hours medium group: 0h</td>
</tr>
<tr>
<td>Hours small group: 13h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 86h</td>
</tr>
</tbody>
</table>
1. Introduction

Description:
Course description. Programmable electronic systems. Architecture of a microprocessor system.

Learning time: 16h
- Theory classes: 4h
- Self study: 12h

2. The CPU

Description:
ALU, registers, control unit and datapath. Instruction sets: RISC and CISC. Bus cycles

Learning time: 20h
- Theory classes: 4h
- Laboratory classes: 2h
- Self study: 14h

3. Interfacing memory

Description:
Types of memory: ROM and RAM. Interfacing memory to the processor: Address decoding and timing.

Learning time: 29h
- Theory classes: 6h
- Laboratory classes: 3h
- Self study: 20h

4. The I/O subsystem

Description:
I/O interfaces, programmed and interrupt-driven I/O. DMA

Learning time: 22h
- Theory classes: 4h
- Laboratory classes: 4h
- Self study: 14h

5. Advanced microprocessor systems

Description:
Pipelined and superscalar processors. Memory Hierarchy and Cache

Learning time: 16h
- Theory classes: 4h
- Self study: 12h
6. Software development tools

<table>
<thead>
<tr>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Self study: 14h</td>
</tr>
</tbody>
</table>

Description:
Development process, Integrated development environment, Testing and debugging tools, RTOS

Planning of activities

LABORATORY

Description:
Continuous assessment of laboratory exercises to develop along the course.

EXERCISES

Description:
Exercises to strengthen the theoretical knowledge.

SHORT ANSWER TEST (CONTROL)

Description:
Mid-term control.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:
Final examination.

Qualification system

Final examination: 60%
Mid-term exam: 15%
Laboratory assessments: 25%
Bibliography

Basic:

Complementary: