230609 - RSEN - Remote Sensing for Earth Observation

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree: DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 1992). (Teaching unit Optional)
MASTER'S DEGREE IN INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
DEGREE IN ELECTRONIC ENGINEERING (Syllabus 1992). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: ANTONI BROQUETAS
Others: ADRIANO CAMPS

Degree competences to which the subject contributes

Specific:
1. Ability to apply advanced knowledge in photonics, optoelectronics and high-frequency electronic
2. Ability to design radio-navigation and location systems, as well as radar systems.
3. Ability to develop, direct, coordinate, and technical and financial management of projects in the field of: telecommunication systems, networks, infrastructures and services, including the supervision and coordination of other's subprojects; common telecommunications infrastructures in buildings or residential areas, including digital home projects; telecommunication infrastructures in transport and environment; with corresponding energy supply facilities and assessment of electromagnetic emissions and electromagnetic compatibility.
4. Ability to develop electronic instrumentation, as well as transducers, actuators and sensors.
5. Ability to integrate Telecommunication Engineering technologies and systems, as a generalist, and in broader and multidisciplinary contexts, such as bioengineering, photovoltaic conversion, nanotechnology and telemedicine.

Transversal:
6. ENTREPRENEURSHIP AND INNOVATION: Being aware of and understanding how companies are organised and the principles that govern their activity, and being able to understand employment regulations and the relationships between planning, industrial and commercial strategies, quality and profit.
7. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
8. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
9. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
10. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.
230609 - RSEN - Remote Sensing for Earth Observation

Teaching methodology
- Lectures
- Application classes
- Laboratory classes
- Laboratory practical work
- Group work (distance)
- Individual work (distance)
- Exercises
- Extended answer test (Final Exam)

Learning objectives of the subject

The course basic objective is training the students in the basic concepts, techniques and underlying technologies involved in the design and development of space-borne and air-borne sensors applied to Earth Observation and other imaging related fields. The contents of the course provide the technical information required to exploit remote sensing data in the different phases of the value chain: data acquisition, calibration, surface modeling, geophysical & biological parameters inversion, etc.

Learning results of the subject

- Ability to understand the principles of operation, limitations, advantages and disadvantages of alternative remote sensing techniques including active and passive systems using microwaves, THz, Infrared and visible ranges of the Electromagnetic Spectrum.
- Ability to analyze and design remote sensing systems with the required performance of the intended applications, including: spatial/radiometric resolutions, range of operation, calibration and processing subsystems, etc.
- Knowledge of the fundamentals of the physical interaction between waves and matter that can be used for obtaining information of bodies remotely, including scattering, emission, polarimetry and the associated mathematical models and approximations.
- Ability to analyze and propose the basic mission parameters related to space-borne, air-borne or ground-based platforms, including orbital design, downlink requirements and motion compensation subsystems.
- Ability to apply signal processing and inversion modeling techniques to the calibration, image formation, geocoding and geo/bio-physical parameters inversion from remote sensing images.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Hours small group: 13h</td>
<td>10.40%</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Self study: 86h</td>
<td>68.80%</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Learning time: 3h</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Introduction. | Theory classes: 1h
--- |
| | Self study : 2h |
| Description: | |
| - The Remote Sensing sector and value chain
- Remote sensing active and passive techniques |

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 12h</th>
</tr>
</thead>
</table>
| 2. Remote Sensing techniques | Theory classes: 3h
--- |
| | Laboratory classes: 2h
--- |
| | Self study : 7h |
| Description: | |
| - Sensing at Microwave, THz, IR and Visible regions of the EM Spectrum
- Remote sensing platforms. Space-borne, air-borne and ground based systems.
- Space-borne missions. Orbital design |

<table>
<thead>
<tr>
<th>Content</th>
<th>Learning time: 29h</th>
</tr>
</thead>
</table>
| 3. Radar sensors | Theory classes: 7h
--- |
| | Laboratory classes: 2h
--- |
| | Self study : 20h |
| Description: | |
| - Radar Cross Section. Backscattering coefficients. Radar power equation
- Radar profiling. Altimeters. Wind scatterometers. Meteorological radars
- Synthetic Aperture Radar (SAR) techniques.
- Image reconstruction and spatial resolution
- Speckle noise. Multi-look techniques
- Radar polarimetry and interferometry. Applications |
4. Lidar Sensors

Description:
- Elastic Lidar, Rayleigh and Mie Scattering, DIAL Systems
- Inelastic Lidar, Raman and Fluorescence.
- Solid targets and atmospheric Lidar power equations
- Lasers and photo-detectors
- Lidar applications in atmosphere sounding, surface topography and 3D modeling

Learning time: 8h
- Theory classes: 2h
- Self study: 6h

5. Optical Radiometers

Description:
- Planck's radiation law of the black body, Solar illumination, Impact of the atmosphere.
- Lens and mirrors. First order analysis of optical systems. IFOV and FOV.
- Imaging photo-detectors: linear and frame arrays CCD & CMOS technologies. Scanning systems.
- Multiespectral and hyperspectral cameras
- Radiometric resolution of optical systems. NEP and NET
- Classification of remote sensing images

Learning time: 28h
- Theory classes: 7h
- Laboratory classes: 2h
- Self study: 19h

6. Microwave Radiometers

Description:
- Surface emissivity of natural surfaces at microwaves, Impact of the atmosphere. Model inversion expressions.
- Microwave radiometers configurations: Total power, Dicke and Noise Injection systems.
- Calibration and radiometric resolution. Scanning systems
- Aperture synthesis radiometers

Learning time: 23h
- Theory classes: 5h
- Laboratory classes: 2h
- Self study: 16h
7. Remote Sensing with GNSS opportunity signals

<table>
<thead>
<tr>
<th>Learning time: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Self study : 7h</td>
</tr>
</tbody>
</table>

Description:
- Ambiguity functions: Waveforms and Delay-Doppler Maps
- Radio Occultation of GNSS signals: principles and application to the atmospheric observation.
- GNSS reflections: principles and applications in altimetry, sea state, soil moisture and vegetation.

8. Calibration and geocoding of remote sensing images

<table>
<thead>
<tr>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 9h</td>
</tr>
</tbody>
</table>

Description:
- Calibration and radiometric compensation of remote sensing images. Calibration surfaces and targets
- Geometric rectification of high resolution sensors
- Motion measurement and compensation in air-borne systems.
- Geocoding of remote sensing products
- Integration of Remote Sensing data in Geographic information systems
Planning of activities

LABORATORY

Description:
- 5 sessions using specialized software applications on real data devoted to the following topics:
 - Orbital design
 - Synthetic Aperture Radar.
 - Optical Multispectral imaging
 - Microwave radiometers
 - Image Geocoding

WRITTEN WORK

Description:
The students will prepare a written work on proposed remote sensing missions (carried out in group of 2 students)

EXERCISES

Description:
The students have a collection of problems of past examinations with solutions to consolidate concepts and analysis/design methodologies. The exercises are for self-evaluation.

FINAL EXAMINATION

Description:
Based on short questions and problems.

Qualification system

- Final examination: 50%
- Laboratory assessments: 25%
- Written work: 25%
Bibliography

Basic:

Complementary: