230611 - IT - Information Theory

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2018
Degree: MASTER'S DEGREE IN INFORMATION AND COMMUNICATION TECHNOLOGIES (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: JAVIER RODRÍGUEZ FONOLLOSA
Others: JAVIER RODRÍGUEZ FONOLLOSA

Prior skills
Knowledge of random variables and probability.

Degree competences to which the subject contributes

Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.
2. Ability to design and dimension transport, broadcast and distribution networks for multimedia signals.

Transversal:
3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
5. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures.
- Problems solved individually or in groups by the student.
- Presentation of a journal paper previously agreed with the professor by the student individually.

Learning objectives of the subject
Understanding the general principles and the most common tools in the field of information theory and its application to formulate the fundamental limits of source and channel coding, both point-to-point and distributed or multiuser.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td>39h</td>
<td>0h</td>
<td>0h</td>
<td>0h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td>31.20%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
230611 - IT - Information Theory

Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Introduction** | 3h 07m | Theory classes: 1h
| | | Self study: 2h 07m |
| **Information Measures and typicality.** | 12h 30m | Theory classes: 4h
| | | Self study: 8h 30m |
| **Point-to-Point Information Theory** | 37h 30m | Theory classes: 12h
| | | Self study: 25h 30m |
| **Distributed lossless compression** | 9h 23m | Theory classes: 3h
| | | Self study: 6h 23m |

Introduction
Introduction to the field of Information Theory. Course contents, organization and grading.

Information Measures and typicality.
Entropy, joint entropy, conditional entropy, relative entropy, mutual information, typical sequences, jointly typical sequences, properties, inequalities, stochastic Processes, Markov Chains and entropy rate.

Point-to-Point Information Theory
Channel coding, packing lemma, channel coding with input cost, Gaussian channel, lossless source coding, lossy source coding, covering lemma, quadratic Gaussian source coding.

Distributed lossless compression
Outer bound of the optimal rate region, Slepian-Wolf Theorem, Achievability proof of the Slepian-Wolf Theorem.
Planning of activities

Exercises.

Hours: 6h
Self study: 6h

Description:
Exercises to strengthen the theoretical knowledge. A set problems to be solved individually or in groups (maximum three students per group) will be available after each chapter.

Paper presentation.

Hours: 6h
Guided activities: 6h

Description:
The student will prepare a slide presentation of a journal paper of his choice related to Information Theory previously agreed with the professor. The presentation must be prepared using the provided LaTeX template. Preparation of the presentation slides is mandatory but actual delivery of the presentation at the final exam day is optional. There is no final exam.

Qualification system

- Exercises (60%)
- Journal paper presentation (40%)
230611 - IT - Information Theory

Bibliography

Basic:

Complementary: