Degree competences to which the subject contributes

Specific:
1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Transversal:
2. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
3. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
4. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology

- Lectures (50%)
- Application classes (with Matlab or similar) (50%)
- Team work: project, presentation
- Individual work: preparation and completion (out classroom) of application activities

Learning objectives of the subject
Learning objectives of the subject
Understanding and being competent on a relevant set of concepts and techniques in the field of digital audio processing, and their application to problems arising from real applications. Especially, speech and music signals and applications will be considered.

Learning results:
Ability to digitally process, in an application-oriented context, audio and speech signals, in order to analyze, model, extract information from, clean, modify, and generate/synthesize them.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>125h</td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>39h</td>
<td>31.20%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
1. Introduction

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Course presentation
Audio diversity
Characteristics of speech and music. Production model
Hearing and auditory modeling
The short-time Fourier transform

2. Short-term analysis-synthesis of (cuasi)periodic signals

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Filter-bank analysis/synthesis. The phase vocoder
Filter-bank and spectrogram
Time-scale and pitch modification
QMF filters. MP3 coding.

3. Modeling and representation of speech signals

Learning time: 12h
Theory classes: 6h
Self study: 6h

Description:
Production-based all-pole modeling
Pitch determination for speech and music
LPC-based coding used in mobile telephony
4. Enhancement of speech and audio signals

Description:
- Cancellation: echo, interference
- Denoising: spectral subtraction, Wiener-based filtering, wavelets
- Blind source separation: ICA, CASA, NMF

Learning time: 12h
- Theory classes: 6h
- Self study: 6h

5. Multi-microphone audio processing

Description:
- Room acoustics
- Array beamforming
- Acoustic source localization and tracking

Specific objectives:

Learning time: 12h
- Theory classes: 6h
- Self study: 6h

6. Recognition and detection of audio and speech

Description:
- 6. Recognition and detection of audio and speech
- Pattern-matching approaches
- Audio activity detection
- Application to speech and speaker recognition

Learning time: 12h
- Theory classes: 6h
- Self study: 6h
Projects realization and presentation

Learning time: 54h
- Theory classes: 3h
- Self study: 51h

Description:
Design, implementation and test of a audio processing system for a specific application
Oral presentation of 1) Project proposal, and 2) Project realization

Qualification system

Attendance/participation in class (10%)
Tests (30%)
Project (50%)
Presentation (10%)

Bibliography

Basic:

Complementary:

Others resources:
- Lecture slides
- Practical work statements and programs

Audiovisual material
- Slides
 Slides used in lectures

Computer material
- Codi programes
 Software codes in Matlab or similar