Degree competences to which the subject contributes

Specific:
1. Ability to conceive and design electronic circuits for signal amplification, for low and high (radio) frequencies, depending on the type of application and targeting specific consumption, noise, linearity, stability, impedance and bandwidth figures.
Learning objectives of the subject:
The aim of this course is to provide the student with solid and broad knowledge of the main types of circuits involved in analog signal acquisition and processing (amplification, filtering and conversion to digital domain), with special focus on understanding the main non-idealities that limit either dynamic range or the frequency of operation, and how they are related to the circuit solution and/or technology. After this course, the student will be in position to easily follow more specialized optional courses focused on specific applications (eg. high-frequency communications, signal conditioning) or specific technologies (eg., microelectronics). The course assumes as previous knowledge: basic concepts of amplification, transistor modeling, analysis of analog circuits described at transistor level or two-port level, as well as circuit simulation environments such as Cadence or Spice, corresponding to the "Electronics for Communication Systems" leverage course or similar. Beyond these basic concepts, a first part of the course will be devoted to describe and understand the limitations of basic amplification circuits -transistor-level- and introduce advanced circuital solutions and techniques. A second part of the course will be devoted to implementation of filters, both continuous time and using the switched-capacitor approach, and understand the main characteristics of the different approaches. The last part of the course is devoted to analog-digital conversion, architectures for high resolution or high speed, evaluation of their figures of merit, with special focus on understanding the effects the limit the effective resolution and conversion speed.

Transversal:
- EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
- FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology:
- Lectures
- Individual work (distance)
- Design exercises (analysis and simulation)
- Extended answer test (Final Exam)

Learning objectives of the subject:
The aim of this course is to provide the student with solid and broad knowledge of the main types of circuits involved in analog signal acquisition and processing (amplification, filtering and conversion to digital domain), with special focus on understanding the main non-idealities that limit either dynamic range or the frequency of operation, and how they are related to the circuit solution and/or technology. After this course, the student will be in position to easily follow more specialized optional courses focused on specific applications (eg. high-frequency communications, signal conditioning) or specific technologies (eg., microelectronics). The course assumes as previous knowledge: basic concepts of amplification, transistor modeling, analysis of analog circuits described at transistor level or two-port level, as well as circuit simulation environments such as Cadence or Spice, corresponding to the "Electronics for Communication Systems" leverage course or similar. Beyond these basic concepts, a first part of the course will be devoted to describe and understand the limitations of basic amplification circuits -transistor-level- and introduce advanced circuital solutions and techniques. A second part of the course will be devoted to implementation of filters, both continuous time and using the switched-capacitor approach, and understand the main characteristics of the different approaches. The last part of the course is devoted to analog-digital conversion, architectures for high resolution or high speed, evaluation of their figures of merit, with special focus on understanding the effects the limit the effective resolution and conversion speed.

Study load:

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
## Content

### 1. Amplification

**Learning time:** 49h  
Theory classes: 15h  
Guided activities: 14h  
Self study: 20h

**Description:**
- Review of Basic Single-Transistor Amplifier Stages, MOS and BJT. Biasing. Analysis of the performance (frequency response, linearity, power consumption) in function of the design decisions.
- Output stages. Solutions for matching to low impedances.
- Current mirrors and references.
- Analysis of the trade-off between bandwidth, gain and power consumption. Solutions to amplify at high frequencies (RF). Impact on linearity, variability.
- High-gain Amplifier Stages: Cascode, active cascode, folded cascode.

### 2. Continuous time and Switched capacitor filtering

**Learning time:** 43h  
Theory classes: 12h  
Guided activities: 11h  
Self study: 20h

**Description:**
- Integrator-based continuous-time filters (active - RC)
- Variability: trimming, MOSFET - C
- Gm-C filters. Gm-cells.
- Switched capacitor circuits:
  - Principles
  - Switched capacitor integrators
- General topologies.
  - Bilinear and Biquad stages with continous-time and discrete-time implementations.
  - Implementation of higher-order filters
3. Analog - Digital Conversion

**Description:**
- Digital / Analog converters:
  - Characterization, static lineality (DNL, INL), dynamic characteristics.
  - Parallel architectures. Binary and unary scaling. Segmentation.
  - Serial architectures.
- Analog / Digital converters:
  - Sample & hold circuits, limitations. Aliasing.
  - Characterization, static lineality (DNL, INL), dynamic characteristics.
  - Serial architectures. Successive approximations.
  - Parallel architectures. Comparators.
  - Pipeline. Time interleaving.

**Learning time:** 38h
- Theory classes: 12h
- Guided activities: 11h
- Self study: 15h

---

**Qualification system**

Final examination: 45%
Partial examination: 20%
Exercises: 35%

---

**Bibliography**

**Basic:**


**Complementary:**


**Others resources:**

Course slides, exercises, and tutorials available through the Atenea virtual campus.