230669 - MEMS - Mems. Microelectromechanical Systems

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2019
Degree: MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: LUIS CASTAÑER MUÑOZ, ANGEL RODRIGUEZ
Others: SANDRA BERMEJO

Degree competences to which the subject contributes

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Individual work (distance)
- Exercises
- Extended answer test (Final Exam)

Learning objectives of the subject

Learning objectives of the subject:
Understanding the general principles and tools of the microelectromechanical systems and devices and its applications.

Learning results of the subject:
- Independent ability to propose, plan and develop MEMS devices and applications
- Ability to understand multidomain problems: thermal, fluidic, mechanical and electrical
- Ability to design a fabrication process of a MEMS device
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>39h</th>
<th>31.20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Learning time</th>
<th>Description</th>
</tr>
</thead>
</table>
| **1. Introduction to MEMS** | 6h | - Scaling of forces to the microworld.
- MEMS design and fabrication process outline. |
| **2. Elasticity** | 17h | - Stress and strain
- Elastic properties of main materials
- Beam equation
- Membranes
- Flexures |
| **3. Piezoresistance and piezoelectricity** | 18h | - Piezoresistance and piezoelectric coefficients
- Pressure sensors based on piezoresistors |
| **4. Electrostatic actuation and sensing** | 17h | - Electrostatic force
- Pull-in and pull-out
- Comb actuators and differential capacitance |
5. **Inertial sensors**

Description:
- accelerometers
- gyroscopes

Learning time: 16h
- Theory classes: 5h
- Self study: 11h

6. **Resonators**

Description:
- Resonator model
- Equivalent circuit
- Applications

Learning time: 15h
- Theory classes: 5h
- Self study: 10h

7. **Microfluidics and electrokinetics**

Description:
- Pressure driven flow
- Electrokinetic flow
- Nanoparticle selfassembly
- Dielectrophoresis
- Liquid lenses and displays

Learning time: 18h
- Theory classes: 6h
- Self study: 12h

8. **Fabrication processes**

Description:
- Bulk micromachining
- Surface micromachining
- Foundry services

Learning time: 18h
- Theory classes: 6h
- Self study: 12h
Planning of activities

<table>
<thead>
<tr>
<th>EXERCISES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Exercises to strengthen the theoretical knowledge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXTENDED ANSWER TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Final examination.</td>
</tr>
</tbody>
</table>

Qualification system

- Final examination: from 50% to 60%
- Individual assessments: from 40% to 50%

Bibliography

Basic: