230671 - US - Ultrasonic Systems. Instrumentation and Applications

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2017
Degree: DEGREE IN ELECTRONIC ENGINEERING (Syllabus 1992). (Teaching unit Optional)
ERASMUS MUNDUS MASTER'S DEGREE IN PHOTONICS ENGINEERING, NANOPHOTONICS AND BIOPHOTONICS (Syllabus 2010). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2009). (Teaching unit Optional)
MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Salazar Soler, Jorge
Others: Chavez Dominguez, Juan Antonio
Turo Peroy, Antonio

Degree competences to which the subject contributes

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.
2. FOREIGN LANGUAGE: Achieving a level of spoken and written proficiency in a foreign language, preferably English, that meets the needs of the profession and the labour market.

Teaching methodology
- Lectures
- Application classes
- Laboratory practical work
- Individual work (distance)
- Exercises
- Oral presentations
- Extended answer test (Final Exam)

Learning objectives of the subject

Learning objectives of the subject

The aim of this course is to train students in the design, dimensioning and evaluation of ultrasonic systems. The course starts with the basics of waves and stops at the detailed treatment of complete ultrasonic systems putting considerable emphasis on the specific instrumentation and the applications.

Learning results of the subject

- Understanding the general principles, the instrumentation involved and the operation of systems based on ultrasonic waves.
- Ability to design, implement and operate ultrasonic systems.
- Ability to conceive and design electronic circuits for generating and processing ultrasonic signals.
- Ability to analyse, design and evaluate the operation of electromechanical devices used in ultrasonic systems.
- Ability to develop and evaluate ultrasonic measurement techniques for new applications.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. Introduction

Description: Overview and history of ultrasound

Learning time: 4h
- Theory classes: 2h
- Self study: 2h

2. Ultrasound physics

Description: Vibrations and waves. Elastic properties of solids. Acoustic waves in solids

Learning time: 31h
- Theory classes: 6h
- Laboratory classes: 4h
- Self study: 21h

3. Ultrasonic transducers

Description: Types (piezoelectric, capacitive, EMAT, SAW, micromachined, composite...). Modelling and simulation of electromechanical devices. Transducer characterization (electrical, acoustical, optical). Ultrasonic beam focusing and steering

Learning time: 31h
- Theory classes: 6h
- Laboratory classes: 4h
- Self study: 21h

4. Ultrasonic systems

Description: Main performance characteristics (dynamic range, impedance matching, bandwidth, propagation medium). Ultrasonic generators (pulsers, burst generators). Conditioning of ultrasonic signals. Measurement techniques

Learning time: 32h
- Theory classes: 6h
- Laboratory classes: 5h
- Self study: 21h
5. Applications

Description:
Non-destructive testing and evaluation. Ultrasonic imaging. Sensors. Piezoelectric generators. Ultrasound therapy. Other industrial applications

Learning time: 27h
- Theory classes: 6h
- Self study: 21h

Planning of activities

LABORATORY

Description:
Specification, design, simulation, implementation and characterization of a measurement system based on ultrasonic waves.

EXERCISES

Description:
Exercises to strengthen the theoretical knowledge.

ORAL PRESENTATION

Description:
Presentation of an individual work.

EXTENDED ANSWER TEST (FINAL EXAMINATION):

Description:
FINAL EXAMINATION

Qualification system

Final work: 40%
Exercises: 30%
Laboratory assessments: 30%
Bibliography

Basic:

Complementary: