230694 - IBES - Introduction to Biomedical Electronic Systems

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: MASTER'S DEGREE IN ELECTRONIC ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Degree competences to which the subject contributes

Specific:
CEE9. Ability to design, implement and operate high performance laboratory electronic instrumentation, with emphasis on error analysis, calibration and virtual control.
CEE21. Ability to process continuous variable signals using digital techniques.
CEE11. Ability to evaluate the quality and safety of electronic products including reliability, physical testing, electrical safety and electromagnetic compatibility.

Transversal:
CT2. SUSTAINABILITY AND SOCIAL COMMITMENT: Being aware of and understanding the complexity of the economic and social phenomena typical of a welfare society, and being able to relate social welfare to globalisation and sustainability and to use technique, technology, economics and sustainability in a balanced and compatible manner.
CT3. TEAMWORK: Being able to work in an interdisciplinary team, whether as a member or as a leader, with the aim of contributing to projects pragmatically and responsibly and making commitments in view of the resources that are available.
CT4. EFFECTIVE USE OF INFORMATION RESOURCES: Managing the acquisition, structuring, analysis and display of data and information in the chosen area of specialisation and critically assessing the results obtained.

Teaching methodology
- Lectures
- Application classes
- Laboratory practical work
- Exercises

Learning objectives of the subject

The aim of the subject is to make students aware of the different kinds of signals that can be acquired from a human body and enable them to be able to select instruments, use them and acquire signals and process the signals to obtain estimators relevant for the clinical practice.

Learning results of the subject:
Ability to understand the function of electrodes as electrical interfaces, especially for wearable applications
Ability to understand the physical functions of sensors used to build biomedical equipment.
Ability to understand the technical specifications of measurement equipment and electronic components used to design
biomedical instrumentation.
Ability to acquire biological signals and process them to obtain clinically relevant parameters.
Ability to understand the regulations concerning biomedical systems, including safety and EMC.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours small group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 125h</td>
<td>19h</td>
<td>20h</td>
<td>86h</td>
</tr>
<tr>
<td></td>
<td>15.20%</td>
<td>16.00%</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

Introduction to Biomedical Systems

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 5h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>understand the complexity of signals that can be acquired from a living being, the restriction on system design and the necessary regulations associated.</td>
<td></td>
</tr>
</tbody>
</table>

| | Theory classes: 1h |
| | Self study: 4h |

Endogenous electrical signals

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Laboratory. Acquisition of Bioelectric Signals</td>
<td></td>
</tr>
</tbody>
</table>

	Theory classes: 4h
	Laboratory classes: 2h
	Self study: 16h

Electrical, mechanical and thermal properties of Biological materials

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>understand the passive properties of biological materials. Understand the sensors and excitation needed to obtain information from passive properties. Be able to make estimators of body composition and fluid shifts out of impedance measurements. Be able to obtain the cardiac rhythm from optical properties of muscle.</td>
<td></td>
</tr>
</tbody>
</table>

| | Theory classes: 4h |
| | Self study: 10h |
230694 - IBES - Introduction to Biomedical Electronic Systems

Diagnostic devices and systems

Description:
Monitors for electric signals (ECG, EEG, EMG, …). Blood pressure measurements. Flux, flow and cardiac output measurements. Impedance plethysmography and impedance cardiography. Respiratory flux and volume. Imaging Systems (MRI, CT, PET, …)

Related activities:
LABORATORY
- Ventilation Monitoring with Thermistor
- Blood flow monitoring with photoplethysmograph
- Respiratory sinus Arrhythmia quantification

Specific objectives:
Ability to understand the physical principle of sensors being used in measurements on the human body. Ability to design and customize electronic circuits for the measurement of biological signals. Ability to process signals to obtain clinically relevant information.

Learning time: 72h
- Theory classes: 6h
- Laboratory classes: 18h
- Self study: 48h

Therapeutic Devices and Systems

Description:
Electrical Stimulation. Magnetic Stimulation. Heating (including ESU)

Specific objectives:
Ability to understand the physical principles of electrical and magnetic stimulation. Ability to understand thermal processes in the human body.

Learning time: 12h
- Theory classes: 4h
- Self study: 8h

Qualification system

Final exam 50%
mid-term exam 5%
Exercises 5%
Laboratory Assessment (including reports) 40%

Regulations for carrying out activities

No devices with wireless communication capabilities will be allowed during exams.
Bibliography

Basic:

Complementary:

