230706 - DLAI - Deep Learning for Artificial Intelligence

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications
Academic year: 2017
Degree: MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff
Coordinator: Giró Nieto, Xavier
Others: Ruiz Hidalgo, Javier
Ruiz Costa-Jussa, Marta
Sayrol Clols, Elisa
Vilaplana Besler, Veronica
Morros Rubio, Josep Ramon
Casamitjana Díaz, Adrià

Prior skills
A previous knowledge on basic machine learning is advisable. In terms of programming, it is recommended that students are familiar with Python programming language beforehand.

Degree competences to which the subject contributes
Specific:
CE1. Ability to apply information theory methods, adaptive modulation and channel coding, as well as advanced techniques of digital signal processing to communication and audiovisual systems.

Teaching methodology
Lectures, in class labs and assignments.

Learning objectives of the subject
At the end of this course students will be able to design, implement, train and evaluate a machine learning system based on deep neural networks.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group:</th>
<th>26h</th>
<th>20.80%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>13h</td>
<td>10.40%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>86h</td>
<td>68.80%</td>
</tr>
</tbody>
</table>
Content

1. DEEP NEURAL NETWORKS

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

Description:
1.1 The Perceptron. Regression vs classification. The Softmax classifier.
1.2 Multi-layer perceptron (MLP).
1.4 Interpretability: t-SNE, visualizations, highest activations.

2. TRAINING

Learning time: 35h 59m
Theory classes: 7h 53m
Self study: 28h 06m

Description:
2.1 Backpropagation
2.2 Optimizers
2.3 Loss functions
2.4 Methodology
2.5 Efficient computation

3. MEMORY NETWORKS

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

Description:
3.1 Recurrent Neural Networks
3.2 Gated models: LSTM, GRU, …
3.3 Advanced models: QRNN, pLSTM, …
4. BEYOND SUPERVISED LEARNING

Description:
- 4.1 Unsupervised and semi-supervised learning.
- 4.2 Adversarial training and generative models
- 4.3 Incremental learning
- 4.4 Active learning
- 4.5 Reinforcement learning
- 4.6 Meta-learning

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m

5. COMPUTATION

Description:
- 5.1 Software stack
- 5.2 Computational requirements
- 5.3 Scalability

Learning time: 18h
Theory classes: 3h 57m
Self study: 14h 03m
Planning of activities

| Lectures | Hours: 108h
Self study: 84h 20m
Theory classes: 23h 40m |
| --- | --- |
| **Description:**
1. DEEP NEURAL NETWORKS
2. TRAINING
3. MEMORY NETWORKS
4. BEYOND SUPERVISED LEARNING
5. COMPUTATION |

| Labs in class | Hours: 10h
Self study: 5h
Laboratory classes: 5h |
| --- | --- |
| **Description:**
1. Classification vs Regression
3. Data pipelines between CPUs and GPUs.
5. Generative adversarial networks.
Support materials:
Deep learning frameworks used during the labs: Caffe, Tensorflow and Keras. |

| Project | Hours: 40h
Theory classes: 1h
Self study: 31h
Laboratory classes: 8h |
| --- | --- |
| **Description:**
Hands on project where students must design, train and test their own deep learning model.
Support materials:
GPUs on a cloud service.
Descriptions of the assignments due and their relation to the assessment:
Oral presentation
Poster |

| Grading | Hours: 4h
Theory classes: 4h |
Description:
Written exams in class.

Qualification system

Labs: 15%
Midterm: 15%
Project: 40%
Final exam: 30%

Bibliography

Basic:

Others resources:

Hyperlink

https://telecombcn-dl.github.io/2017-dlcv/
Deep Learning for Computer Vision Summer School at UPC ETSETB TelecomBCN 2017

https://telecombcn-dl.github.io/2017-dlai/
Web page of the course

Audiovisual material

https://telecombcn-dl.github.io/2017-dlsl/
Resource