230713 - DPROT - Data Protection

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2019
Degree:
- MASTER'S DEGREE IN TELECOMMUNICATIONS ENGINEERING (Syllabus 2013). (Teaching unit Optional)
- MASTER'S DEGREE IN ADVANCED TELECOMMUNICATION TECHNOLOGIES (Syllabus 2019). (Teaching unit Optional)
ECTS credits: 5
Teaching languages: English

Teaching staff

Coordinator: Jorge Villar
Others: Jorge Villar

Prior skills

Basic linear algebra and probability.
It is recommended a basic knowledge of cryptography, at an introductory level.

Teaching methodology

- Lectures
- Individual work (distance)
- Oral presentations
- Final Exam

Learning objectives of the subject

Understanding the necessary cryptographic techniques used to protect data during storage and transmission, in order to guarantee its confidentiality, integrity and authentication.

Study load

| Total learning time: **125h** | Hours small group: | 39h | 31.20% |
| Self study: | 86h | 68.80% |
Introduction

Description: Introduction to cryptography under the point of view of data protection.

Learning time: 9h 36m
Laboratory classes: 3h
Self study: 6h 36m

Symmetric key

Description:

Learning time: 19h 12m
Laboratory classes: 6h
Self study: 13h 12m

Public key

Description:

Learning time: 29h
Laboratory classes: 9h
Self study: 20h

Security models

Description:

Learning time: 19h 12m
Laboratory classes: 6h
Self study: 13h 12m
Zero-knowledge

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 9h 36m</th>
</tr>
</thead>
</table>
| Zero-knowledge proofs and arguments. Non-interactive zero-knowledge. Applications. | Laboratory classes: 3h
Self study: 6h 36m |

Distributed cryptography

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 19h 12m</th>
</tr>
</thead>
</table>
| Cryptography for many users. Secret sharing. Threshold decryption. Threshold signatures. Secure multiparty computation. | Laboratory classes: 6h
Self study: 13h 12m |

Case study

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 19h 12m</th>
</tr>
</thead>
</table>
| Study of real cryptographic protocols used in some practical scenarios. | Laboratory classes: 6h
Self study: 13h 12m |

Qualification system

- Final exam: 40%
- Oral presentation: 20%
- Assignments: 20%
- Final report: 20%

Bibliography